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Abstract

We show how to construct a HOMFLY-PT type oriented link invariant
for links inside a solid torus, following V.F.R. Jones’s original approach,
i.e via normalizing an Ocneanu-type linear trace function from the Hecke
algebras of B-type to the complex numbers. Before defining the invariant
we set up the appropriate topological theory, then we find the braid groups
related to the solid torus and observe that these can be represented by the
Hecke algebras of B-type. Finally we compare our invariant with a skein
invariant for certain dichromatic links found by J. Hoste and M. Kidwell.

1 Introduction

The study of braids dates back to the turn of our century.[16],[3] In 1926 it was
established by E. Artin[4] that the set of all braids on n strings forms a group,
the well-known braid group Bn, with presentation:

Bn = 〈σ1, ..., σn−1 | σiσj = σjσi for |i− j| > 1, σiσi+1σi = σi+1σiσi+1〉.

As geometric objects, braids are related to oriented links via the ‘closure’ oper-
ation (i.e. the joining of the corresponding end-points of a braid). Conversely,
J.W. Alexander showed[1] in 1923 that there exists an algorithm for turning any
oriented link into a braid with isotopic closure1. We study links up to isotopy,
which on the diagram-level can be seen as classes of oriented link diagrams, any
two elements of which differ by a finite sequence of the so-called Reidemeister
moves.[2],[25]

In 1935 A.A. Markov gave the braid analogue of Reidemeister’s theorem, by
showing that isotopy classes of oriented links are in 1-1 correspondence with
certain equivalence classes in the set of all braids.[22],[28] (A complete proof of
Markov’s theorem as well as a thorough study on braids can be found in J.S.
Birman’s book.[6]) On the group level, the braid equivalence in

⋃∞
n=1 Bn can be

formulated as follows:
1H. Brunn [8] in 1897 proved that any knot has a projection with a single multiple point;

from which it follows immediately that we can braid any link diagram.

1
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(i) Conjugation: If α, β ∈ Bn then α ∼ β−1αβ
(ii) Markov moves: If α ∈ Bn then α ∼ ασ+1

n ∈ Bn+1 and α ∼ ασ−1
n ∈ Bn+1.

Hence, one can study links up to isotopy by studying braids up to Markov
equivalence. This fact was first used for constructing link invariants by V.F.R.
Jones[17],[18] in 1984. The way V. Jones reconstructed after Ocneanu the 2-
variable generalization of his polynomial2 (or HOMFLY-PT polynomial)[12],[24],[21]

is based on the following ideas:[19]

We consider the Hecke algebra of An-type, Hn(q), q ∈ C, which has the presen-
tation

〈g1, ..., gn−1 | gigj = gjgi for |i−j| > 1, gigi+1gi = gi+1gigi+1, gi
2 = (q−1)gi+q〉.

We then observe that there is a natural epimorphism of the group algebra CBn

onto Hn(q): σi 7→ gi. There exists now a linear trace function (Ocneanu’s trace)
tr :

⋃∞
n=1Hn(q) −→ C, which is unique up to the following rules:

1) tr(ab) =tr(ba) for a, b ∈ Hn(q)
2) tr(1) = 1 for every Hn(q)
3) tr(agn) = z tr(a) for a ∈ Hn(q) , gn ∈ Hn+1(q) and z ∈ C.

Using the epimorphism of CBn onto Hn(q) and Ocneanu’s trace we can assign
to every braid a complex (Laurent) polynomial. We finally observe that rules
1) and 3) of the trace function resemble (i) and (ii) of the braid equivalence in
S3. Then, according to Markov’s theorem, in order to obtain a link invariant
this trace has to be normalized properly, so that the braids α , ασn and ασn

−1

would be assigned the same label, namely a 2-variable (with variables q and z)
Laurent-polynomial.

All the above take place in S3. In [19] V. Jones asks whether other Hecke
algebras, corresponding to general Artin groups, can be used in the same manner
as the ones of A-type. Here we show that the braid groups related to the solid
torus can be represented by the Hecke algebras of B-type; then, by extending the
above topological set-up and by using analogous algebraic machinery and ideas,
we obtain a HOMFLY-PT type isotopy invariant for links inside a solid torus.
The paper is not self-contained, in the sense that it makes use of theorems, the
proofs of which we only sketch. The full proofs of these theorems appear in [20].

2 In search of a Markov’s theorem

It is known that a solid torus M may be seen as the complement in S3 of another
solid torus Î, say; i.e. M = S3\Î. So links in M may be seen as mixed links in

2V. Jones used initially quotients of the Hecke algebras – namely Temperley-Lieb algebras
– to construct the original 1-variable Jones polynomial.
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Figure 1:

S3 containing the complementary solid torus. We avoid possible ambiguities by
fixing a projection of Î pointwise and also an orientation. Therefore, any link L
in M is represented by a mixed link Î

⋃
L in S3, consisting of a standard link

in S3 linking with the fixed complementary solid torus part Î (for an example
see picture 1 below). A mixed link diagram is a projection Î

⋃
L̃ of Î

⋃
L on the

plane of the projection of Î.
Next, we want to see how isotopy between links in M is reflected in S3 : the
description of M gives rise to the two additional local moves between mixed link
diagrams shown in picture 2, where Î also participates. Hence, Reidemeister’s
theorem is modified as follows:

‘Two links in M are isotopic if and only if any two corresponding mixed link
diagrams in S3 differ by planar isotopy and a finite sequence of the above moves
together with the three Reidemeister moves for the standard part of the mixed
link.’

2.1 Braiding

A mixed link is lying in S3, so one could think of applying to it (any proof
of)[23],[29],[27],[26],[20] Alexander’s theorem in order to obtain a braid. The
problem one would run into, then, is that, when braiding a mixed link diagram
Î

⋃
L̃ we may end up with more than one braid strings for the solid torus

component Î and so, after closing, Î does not necessarily remain fixed. So, we
need a braiding that guarantees that the braid we obtain from a mixed link is
a mixed braid. A mixed braid is defined as a braid in S3, I

⋃
B, with closure

a mixed link and, in particular, the closure of the first string, I, is the fixed
component Î (see picture 3 below for an example). We number the strings of a
mixed braid by numbering only the standard part of it. Indeed:

Theorem 1 (Alexander’s theorem for mixed links). Any oriented mixed
link is isotopic to the closure of some mixed braid.

Proof. Isotope the mixed link to one as in picture 4, by combing and sliding
around the standard part of the link. Then apply to the right-hand side of the
line l in picture 4 any braiding process that does not affect the fixed downward
oriented part of the component Î (most braiding processes have this property).
Finally eliminate the upward oriented part of Î at the left-hand side of l, by
cutting it at some point and by pulling the two ends, so as to obtain a mixed
braid.
The above braiding is good for providing a proof of Theorem 1, but it is not
algorithmic enough to provide an easy proof of a Markov’s theorem for mixed
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Figure 2:

Figure 3:

braids. For this reason we shall describe a more sophisticated braiding process;
this is a modification of a braiding algorithm for oriented links in S3, the idea
of which is the following (for a detailed exposition see [20]):

We start with an oriented link diagram and we mark with points the local
maxima and minima. This set of points separates naturally the diagram into
horizontal or downward arcs on one hand, and into ‘opposite’ arcs (i.e. arcs
that go upwards) on the other hand. We want to eliminate the opposite arcs,
as they go the ‘wrong’ way for a braid. We cut every opposite arc into smaller
pieces that we call little opposite arcs, so that each little opposite arc contains
crossings of only one type – if any – and also, any pair of little opposite arcs
satisfies a certain overlapping condition. Finally, we eliminate a little opposite
arc by cutting it at some point and by pulling and stretching its two ends both
over or under the rest of the original diagram, according to whether the arc
lies over or under other arcs of the diagram. Notice that the downward arcs of
the original diagram remain unaltered throughout the braiding. In the example
below we have two opposite arcs but three little opposite arcs.

Take now a mixed link diagram Î
⋃

L̃. If we apply to it the above braiding
algorithm, we will probably end up with more than one braid strings for the solid
torus component Î, as there might be parts of L̃ interfering with the upwards
oriented part of Î. We overcome the problem by modifying the above algorithm
as follows:

Step 1 We draw the vertical line l that passes through the maximum and
minimum of Î (see picture 6). By general position it does not pass through any
crossings of L̃.
Step 2 We apply our algorithm to the part of the mixed link that lies to the left
of l, considering the points of L̃ that intersect l as end-points of little opposite
arcs. This will leave I unaltered, since this part of it goes already downwards.
Then we close this braided part of L̃ by applying closure on its left-hand side,
and we enclose the ‘closure’ strings of L̃ in a tube T1 (see picture 7 above).

Figure 4:
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Figure 5:

Step 3 Now we apply our algorithm on the right-hand side of l considering the
orientation to be reversed. This will leave Î unchanged. Then we also close this
braided part of L̃ by applying closure on its right-hand side, and we enclose the
new ‘closure’ strings of L̃ in a tube T2 (see picture 7).
Step 4 By rotating around the back of the diagram, we bring T1 to the very
right of the diagram and then T2 to the very left of the diagram, so that the
resulting diagram goes around a central point P on l (see picture 8).
Step 5 If we are left with local maxima/minima in the lower/upper part of the
diagram, these will have to be lying on l, as it follows from the braiding process
(see picture 8 above). To complete the modified algorithm we eliminate these
as follows:
We number with integers the maxima/minima according to their position with
respect to P (which we label with 0), and we isolate them in neighbourhoods
that contain no other parts of the diagram. Then we stretch the arcs one by
one in order (starting from the ones with least absolute value) over/under the
rest of the diagram and above/below P , so that the maxima/minima lie on l in
inverse order of closeness to P (see picture 9).
Step 6 We open the braided diagram by cutting through a half-line starting
from P , after possibly isotoping part of Î so that it appears in the first position
of the braid. Finally we isotope in D2 × I.

Remark 1. If there is no part of L̃ interfering with the upwards oriented part
of Î, we only need to apply Steps 2, 4 and 6.

2.2 Markov’s theorem for mixed braids

Using the braiding described above for links in S3, we can give an elementary
proof of the classical Markov’s theorem[20], in which the downward arcs of the
original diagram do not participate.3 So we have the following even stronger
result:

Theorem 2 (Relative version of Markov’s theorem). Two links contain-
ing the same braided part are isotopic if and only if any two corresponding
braids, both containing the same braided part, differ by conjugation and Markov
moves that do not affect the already braided part.

Corollary 1. In particular, all mixed links related to a solid torus contain the
same braided part Î and, by the modified braiding algorithm described above, all
corresponding braids contain the same braided part I. Therefore, the (geometric)
analogue of Markov’s theorem for links inside a solid torus is a special case of
Theorem 2.

3Other proofs of the classical Markov’s theorem can be found in [5], [23], [26].
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Figure 6:

Next, we want to investigate the existence of algebraic structures in the
sets of mixed braids, in order to formulate Markov’s theorem algebraically (i.e.
looking at mixed braids as algebraic rather than geometrical objects). Indeed,
we observe that the set of all mixed braids on n standard strings, B1,n, forms a
group with concatenation as operation and generators the usual braid generators
σ1, . . . , σn−1 for the standard strings and the mixed generator T pictured below:
As a group, B1,n is the semidirect product of the usual braid group Bn and
the free pure braid normal subgroup, P1,n, generated by T, T1, . . . , Tn−1, where
Ti = σi . . . σ1Tσ1

−1 . . . σi
−1 is shown in picture 11. (Note that P1,n is not the

corresponding to B1,n pure braid group, since it does not contain elements with
pure braiding among the n standard strings.) Therefore we can put together a
presentation for B1,n and obtain the following:4

〈
σ1, . . . , σn−1

T, T1, . . . , Tn−1

∣∣∣∣∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1 for all i
σiσj = σjσi for |i− j| > 1

}
braid
relations

(1) σi
−1Tλ−1σi = Tλ−1 if λ > i + 1 or λ < i

(2) σi
−1Ti−1σi = Ti−1TiTi−1

−1 , i = 1, . . . , n− 1
(3) σi

−1Tiσi = Ti−1 for i = 1, . . . , n− 1

 ‘mixed’
relations

〉

Doing Tietze transformations we eliminate the Ti’s and we obtain:

B1,n =

〈
T, σ1, σ2, . . . , σn−1

∣∣∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1 for all i
σiσj = σjσi for |i− j| > 1
Tσi = σiT for i > 1
Tσ1Tσ1 = σ1Tσ1T

〉

From the above and the geometric analogue of Markov’s theorem (Corollary 1),
we have the following:

Theorem 3 (Markov’s theorem for solid torus links). Let M = S3\Î be
a solid torus with Î also a solid torus; let L1, L2 be two oriented links in M and
I

⋃
B1, I

⋃
B2 be mixed braids in

⋃∞
n=1 B1,n corresponding to L1, L2. then L1

is isotopic to L2 in M if and only if I
⋃

B1 is equivalent to I
⋃

B2 in
⋃∞

n=1 B1,n,
under equivalence generated by the augmented braid relations together with the
following two moves:

(i) Conjugation: If α, β ∈ B1,n then α ∼ β−1αβ
(ii) Markov moves: If α ∈ B1,n then α ∼ ασn

±1 ∈ B1,n+1.
4This presentation appears also in [14] and in [9], where B1,n is seen as the subgroup of

the usual braid group Bn+1, the elements of which fix the first string, and it is used to aid in
finding a presentation for the usual pure braid group.
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Figure 7:

Note 1. There is a natural inclusion of B1,n into B1,n+1 adequately described
by picture 12, and therefore, the direct limit

⋃∞
n=1 B1,n is well-defined.

3 B1,n and the Hecke algebras of B-type

3.1 Algebraic definitions et cetera

A group G with a presentation

〈w1, ..., wn | (wiwj)
mij = 1, mii = 1 for i = 1, . . . , n〉

is called a Coxeter group. All finite Coxeter groups have been classified. For
example, the Coxeter group of An-type is the symmetric group Sn, and it has
the following presentation:

Sn = 〈s1, ..., sn−1 | si
2 = 1, (sisj)

2 = 1 for |i− j| > 1, (sisi+1)
3 = 1〉,

where si corresponds to the transposition (i, i + 1).
If G is a Coxeter group with a presentation as above, then the corresponding
Artin group B is given by

〈τ1, . . . , τn | τiτjτi . . . = τjτiτj . . . ,where the number of factors in either side is mij〉.

For example, the usual braid group, Bn, is the Artin group of Sn.

Every Coxeter group is related to a Hecke algebra H (usually considered over
the field C), a presentation of which is obtained from the presentation of the
corresponding Artin group given above, by adding the quadratic relation τi

2 =
(qi − 1) · τi + qi · 1, where qi 6= 0 ∈ C is seen as a fixed variable.
Note If qi = 1 for all i or not a root of unity and we choose as field C, then
the Hecke algebra is semisimple and isomorphic to the group algebra CG, where
G is any Coxeter group (J. Tits, [7]). (For the dimension, existence and basic
properties of arbitrary Hecke algebras corresponding to finite Coxeter groups
see [10].)

3.2 The Coxeter group of Bn-type

We shall start by giving an intuitive ‘pairs of shoes’-description of Wn, the Cox-
eter group of Bn-type, given by G.D. James:
We think of n numbered shelves and n numbered and ordered pairs of shoes;
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we put one pair on each shelf, not necessarily in the right order pairwise, and
not necessarily on the right shelves. (The description can be made rigorous if
we consider an ordered n-tuple of ordered pairs of objects.) We want to place
the pairs of shoes correctly, but we are only allowed to swap over the shoes
of the pair that is placed on the first shelf, and also to swap pairs that lie on

consecutive shelves. If, for example, we want to arrange the word


2 2
4 4
3 3
1 1

,

where we use the notation ii for the pair of shoes with number i, and i is the
left shoe, then one possible procedure is the following:


2 2
4 4
3 3
1 1

 −→


4 4
2 2
3 3
1 1

 −→


4 4
2 2
3 3
1 1

 −→


4 4
2 2
1 1
3 3

 −→


4 4
1 1
2 2
3 3

 −→


1 1
4 4
2 2
3 3

 −→


1 1
4 4
2 2
3 3

 −→


1 1
2 2
4 4
3 3

 −→


1 1
2 2
3 3
4 4

 .

We can see that we have been making use of the symmetric group Sn to swap
pairs on consecutive shelves, and of a cyclic group with two elements, C2, for
swapping shoes on the first shelf.

If now vi means ‘swap the shoes on the ith shelf’, then, for v1 = t we have:

v2 = s1ts1, v3 = s2s1ts1s2 = s2v2s2, · · · , vn = sn−1 . . . s1ts1 . . . sn−1 .

The elements v1, . . . , vn generate the group 2n ∼= C2×. . .×C2 ( n copies), which
is a normal subgroup of Wn. As a set, Wn is the cartesian product 2n×Sn and
therefore, |Wn| = 2n · n!. As a group, Wn is the semidirect product of 2n and
Sn. So we have the following presentation:

Wn =

〈
s1, . . . , sn−1, si ∈ Sn

v1, . . . , vn, vj ∈ 2n

∣∣∣∣∣∣∣∣∣∣∣∣

si
2 = 1, sisi+1si = si+1sisi+1 for all i

sisj = sjsi for |i− j| > 1
vi

2 = 1, vivj = vjvi for all i,j
sj
−1visj = sjvisj = vi

sj = vsj(i)

where sj(i) is the image of i under
the transposition sj = (j, j + 1)

〉
,
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Figure 8:

which, after Tietze transformations, yields the following reduced presentation:

Wn =

〈
t, s1, s2, . . . , sn−1

∣∣∣∣∣∣∣∣∣∣

(ts1)
4 = 1 or ts1ts1 = s1ts1t

(tsi)
2 = 1 or tsi = sit for i > 1

t2 = si
2 = 1 for i = 1, . . . , n− 1

(sisi+1)
3 = 1 or sisi+1si = si+1sisi+1 for all i

(sisj)
2 = 1 or sisj = sjsi for |i− j| > 1

〉
.

The above presentation can be coded in the following Dynkin diagram:
where the single bonds of strength mean relations of degree 3 and the double
bond a relation of degree 4. Also, if two generators are not connected by a bond,
the relation between them is of degree 2, i.e. they commute.

Theorem 4. B1,n is the Artin group of Wn.

Proof. According to the definition of an Artin group, it follows by comparing
the presentation of B1,n with the presentation of Wn given above.

As a consequence, the following is a presentation for the Hecke algebra of
Bn-type, Hn(q, Q), q, Q ∈ C, which corresponds to Wn:

Hn(q, Q) =

〈
t, g1, . . . , gn−1

∣∣∣∣∣∣∣∣∣∣∣∣

tg1tg1 = g1tg1t
tgi = git for i > 1
t2 = (Q− 1)t + Q
gi

2 = (q − 1)gi + q for i = 1, . . . , n− 1
gigi+1gi = gi+1gigi+1 for all i
gigj = gjgi for |i− j| > 1

〉
.

Remark 2. The Dynkin diagram of Wn indicates that there is a natural in-
clusion of Wn into Wn+1 (by adding an extra node at the end), and this
extends to a natural inclusion of Hn(q, Q) into Hn+1(q, Q). Thus the di-
rect limit

⋃∞
n=1Hn(q, Q) is well-defined, and therefore we may observe that

there is a natural epimorphism, π :
⋃∞

n=1 CB1,n 7→
⋃∞

n=1Hn(q, Q), such that
π(T ) = t, π(σi) = gi.

4 A trace function

The above now suggest that we look for a trace function from
⋃∞

n=1Hn(q, Q) to
C analogous to Ocneanu’s trace, so as to attach to each braid in B1,n a complex
polynomial. Indeed, we have the following theorem, which is joint work of the
author with M. Geck.
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Theorem 5. Given z and s in C, there exists a unique linear function

tr : H :=
∞⋃

n=1

Hn(q, Q) −→ C

such that the following hold:

1) tr(ab) = tr(ba) , a, b ∈ H
2) tr(1) = 1 for all Hn(q, Q)
3) tr(agn) = z tr(a) , a ∈ Hn(q, Q)
4) tr(atn) = s tr(a) , a ∈ Hn(q, Q)

where tn = gn . . . g1tg1
−1 . . . gn

−1.

Proof. (Sketch of the proof) The proof[20] rests squarely on the proof of Oc-
neanu’s trace function as given in [19]. The proof of existence relies on inductive
arguments using the following information on the structure of Hn(q, Q):[11]

The group Wn is a subgroup of Wn+1 of index 2(n + 1). In [11], R. Dipper and
G.D. James show that a complete set of right coset representatives of Wn in
Wn+1 is given by

Jn+1 :=
{
1, sn . . . si | i = 1, . . . , n

} ⋃{
sn . . . s1s0s1 . . . si | i = 0, 1, . . . , n for s0 = t

}
I.e. every element w ∈ Wn+1 can be written uniquely in the form

w ∈ Wn or w = u · x , where u ∈ Wn and x ∈ Jn+1 .

Equivalently, every element w ∈ Wn+1 has one of the following forms:

(a) w ∈ Wn

(b) w = usnv , u, v ∈ Wn

(c) w = usn . . . s1ts1 . . . sn , u ∈ Wn

We also have analogous statements in the Hecke algebra Hn+1(q, Q). I.e.
every element in Hn+1(q, Q) can be written as a linear combination of elements
w, each of precisely one of the following forms5:

(a) w ∈ Hn(q, Q)
(b) w = ugnv , u, v ∈ Hn(q, Q)
(c) w = ut′n , u ∈ Hn(q, Q) , t′n = gn . . . g1tg1 . . . gn .

This canonical basis is equivalent to the following:

(a) w ∈ Hn(q, Q)
(b) w = ugnv , u, v ∈ Hn(q, Q)
(c) w = utn , u ∈ Hn(q, Q) , tn = gn . . . g1tg1

−1 . . . gn
−1 .

5An algorithm for writing an arbitrary element as a linear combination of elements in the
canonical basis is described in [13].
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Conclusion There is a canonical basis for Hn+1(q, Q), such that the higher
index elements gn and tn appear at most once in any word.

We shall also need the map cn : Hn ⊕Hn ⊕Hn ⊗Hn−1 Hn −→ Hn+1 defined
by

cn(a⊕ b⊕ c⊗d) = a+ btn + cgnd. cn is an isomorphism of (Hn,Hn)-bimodules.

We can now define inductively a trace, tr, on H =
⋃

n≥1Hn(q, Q) as follows:
Suppose tr is defined on Hn(q, Q) and let x ∈ Hn+1(q, Q) be arbitrary; then
there exist a, b, c, d ∈ Hn(q, Q) such that x = cn(a⊕ b⊕ c⊗ d).

Define tr(x) := tr(a) + s tr(b) + z tr(cd).

This trace satisfies the rules 2), 3) and 4) of the statement of Theorem 5. It
remains then to prove that property 1) is also satisfied for all a, x ∈ H, and we
do this case by case.

Finally note that, having proved existence, the uniqueness of the trace will follow
immediately since, given w ∈ Hn(q, Q), it is clear that tr(w) can be computed
inductively from the above using rules 1), 2), 3), 4) and linearity.

Remark 3. If a word a ∈ Hn(q, Q) does not contain any ti’s, then for calcu-
lating tr(a) we only need to use rules 1), 2) and 3) of Theorem 5; so tr(a) is the
same as Ocneanu’s trace applied on a.

Below we give an example of calculating the trace of a word in H4(q, Q),
in which we also demonstrate how to bring the word to the canonical form.
To facilitate the reader, we underline the words on which we apply the algebra
relations or the trace rules, and we indicate which rule we apply each time.
Also, we make use of the relations:

gi
−1 =

1
q

gi +
1− q

q
· 1, gi+1tigi+1ti = tigi+1tigi+1,

which follow easily from the defining relations of Hn(q, Q).

Example tr(g2t1g2t1g2g1g3
−1t2) =

1
q tr(g2t1g2t1g2g1g3t2) + 1−q

q tr(g2t1g2t1g2g1t2)
3)
=

z+1−q
q tr(g2t1g2t1g2g1t2) = z+1−q

q tr(t1g2t1g2
2g1t2) =

z+1−q
q tr(t1g2t1g2

2t2g1) = z+1−q
q tr(t1g2t1g2

3t1g2
−1g1) =

z+1−q
q (q2− q +1) tr(t1g2t1g2t1g2

−1g1)+ z+1−q
q q(q− 1) tr(t1g2t1t1g2

−1g1) =
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(z+1−q)(q2−q+1)
q tr(t1g2g2

−1t1g2t1g1)+(z +1− q)(q−1) tr(t1g2t1
2g2

−1g1) =

(z+1−q)(q2−q+1)
q tr(t12g2t1g1)+

(z+1−q)(q−1)Qtr(t1g2t1g2
−1g1)+(z+1−q)(q−1)(Q−1) tr(t1g2g2

−1g1) =

(z+1−q)(q2−q+1)
q Qtr(t1g2t1g1) + (z+1−q)(q2−q+1)

q (Q− 1) tr(g2t1g1)+

(z + 1− q)(q − 1)Qtr(t1t2g1) + (z + 1− q)(q − 1)(Q− 1) tr(t1g1)
3),4)
=

(z+1−q)(q2−q+1)Q
q z tr(t1t1g1) + (z+1−q)(q2−q+1)(Q−1)

q z tr(t1g1)+

(z + 1− q)(q − 1)Qs tr(t1g1) + (z + 1− q)(q − 1)(Q− 1) tr(t1g1) =

(z+1−q)(q2−q+1)Qz
q tr(t12g1)+[

(z+1−q)(q2−q+1)(Q−1)z
q + (z + 1 − q)(q − 1)Qs + (z + 1 − q)(q − 1)(Q −

1)
]
tr(t1g1) =

(z+1−q)(q2−q+1)Qz
q Qtr(t1g1) + (z+1−q)(q2−q+1)Qz

q (Q− 1) tr(g1)+[
(z+1−q)(q2−q+1)(Q−1)z

q + (z + 1 − q)(q − 1)Qs + (z + 1 − q)(q − 1)(Q −

1)
]
tr(t1g1)

3)
=

(z+1−q)(q2−q+1)Qz(Q−1)
q z +

[
(z+1−q)(q2−q+1)Q2z

q + (z+1−q)(q2−q+1)(Q−1)z
q +

(z + 1− q)(q − 1)Qs + (z + 1− q)(q − 1)(Q− 1)
]
tr(t1g1) =

(z+1−q)(q2−q+1)Q(Q−1)z2

q +
[

(z+1−q)(q2−q+1)Q2z
q + (z+1−q)(q2−q+1)(Q−1)z

q +

(z + 1− q)(q − 1)Qs + (z + 1− q)(q − 1)(Q− 1)
]
tr(g1tg1

−1g1)
3)
=

(z+1−q)(q2−q+1)Q(Q−1)z2

q +
[

(z+1−q)(q2−q+1)Q2z
q + (z+1−q)(q2−q+1)(Q−1)z

q +

(z + 1− q)(q − 1)Qs + (z + 1− q)(q − 1)(Q− 1)
]
z tr(t)

4)
=

(z+1−q)(q2−q+1)Q(Q−1)z2

q +
[

(z+1−q)(q2−q+1)Q2z
q + (z+1−q)(q2−q+1)(Q−1)z

q +

(z + 1− q)(q − 1)Qs + (z + 1− q)(q − 1)(Q− 1)
]
zs.



Solid torus links and Hecke algebras of B-type 13

5 A trace-invariant for solid torus links

5.1 Construction of the invariant

The epimorphism π :
⋃∞

n=1 CB1,n 7→
⋃∞

n=1Hn(q, Q) defined by sending T 7→
t, σi 7→ gi (and therefore Ti 7→ ti, since Ti = σi . . . σ1Tσ1

−1 . . . σi
−1 and ti =

gi . . . g1tg1
−1 . . . gi

−1), together with the trace, result that to every mixed braid
in B1,n we can assign an expression in the variables q, Q, z, s .

We observe now that the moves (i), (ii) in Theorem 3 resemble the rules 1) and
3) of Theorem 5. So, we reason that, in order to obtain a HOMFLY-PT type
link invariant we want to normalize the gi’s so that both Markov moves affect
the trace in the same way. I.e. we want to normalize gi to θgi , θ ∈ C , so as
to obtain

tr(a(θgn)) = tr(a((θgn)−1)) for a ∈ Hn(q, Q).

(The normalization as well as the phrasing is the same as in [19], but for com-
pleteness we repeat it here adapted to our case). Then, for z 6= 0 we have:

θ2 tr(agn) = tr(agn
−1) =

1
q

tr(agn) +
1− q

q
tr(a) ⇐⇒

θ2z tr(a) =
z + 1− q

q
tr(a) ⇐⇒ θ2 =

z + 1− q

qz
= λ .

Thus
tr(
√

λgi) = tr((
√

λgi)
−1

) =
√

λ z = −
√

λ
1− q

1− λq
.

It follows now that, if we represent B1,n by πλ, where πλ(σi) =
√

λ gi ∈
Hn(q, Q) and πλ(T ) = t ∈ Hn(q, Q) , (which also implies that πλ(Ti) = ti ∈
Hn(q, Q)), then the function of q, λ,Q, s given by[

− 1− λq√
λ(1− q)

]n−1

tr(πλ(α)), for α ∈ B1,n ,

depends only on the mixed link α̂ (the closure of α). The epimorphism π,
though, has the advantage of only involving the variables q, Q; so we incorporate√

λ in the ‘universal’ coefficient and we define:

Definition 1. The 4-variable invariant XÎ∪L(q, Q, λ, s) of the oriented mixed
link Î ∪ L that represents an oriented link inside the solid torus M , is the
function:

Xα = XÎ∪L(q, Q, λ, s) =
[
− 1− λq√

λ(1− q)

]n−1

(
√

λ)e tr(π(α))

where α ∈ B1,n is a word in the σi’s and (ti)’s such that α̂ = Î ∪ L, e is the
exponent sum of the σi’s that appear in α, and π the representation of B1,n in
Hn(q, Q) such that t 7→ t, σi 7→ gi.
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Note 2. By their definition, the mixed braids T and Ti’s do not affect the
exponent sum e, so we can ignore them when we estimate e.

Examples 1. • As it follows from Remark 3, if α does not contain any (Ti),
then Xα is the HOMFLY-PT polynomial of the link in S3 obtained by removing
from α the solid torus string I. So, if for instance, α = 1 ∈ B1,1 , then Xα = 1;
and if α = 1 ∈ B1,n (corresponding to the n-component unlink), then

Xα =
[
− 1− λq√

λ(1− q)

]n−1

.

• If α = T ∈ B1,1, then Xα = s; and if α = ti ∈ B1,n (corresponding to
the n-component unlink, the (i + 1)st string of which wraps once around I in a
positive sense), then

Xα =
[
− 1− λq√

λ(1− q)

]n−1

s

whilst, if α = (ti)
−1 ∈ B1,n (corresponding to the n-component unlink, the

(i + 1)st string of which wraps once around I in a negative sense), then

Xα =
[
− 1− λq√

λ(1− q)

]n−1 [ 1
Q

s +
1−Q

Q

]
.

• Similarly, if α = (ti)
2 ∈ B1,n (the n-component unlink, the (i + 1)st compo-

nent of which wraps twice around I in a positive sense), then

Xα =
[
− 1− λq√

λ(1− q)

]n−1 [
(Q− 1)s + Q

]
.

• Finally, if α = σ1
3(t)2 ∈ B1,2 (a right-handed trefoil that wraps twice around

I in a positive sense), then

Xα = − 1− λq√
λ(1− q)

(
√

λ)
3
tr(g1

3t2) , where

tr(g1
3t2) = (q2 − q + 1) tr(g1t

2) + q(q − 1) tr(t2) =

(q2− q +1)(Q− 1) tr(g1t)+ (q2− q +1)Qtr(g1)+ q(q− 1)(Q− 1) tr(t)+
q(q − 1)Qtr(1) =

(q2−q+1)(Q−1) q−1
1−λq s+(q2−q+1)Q q−1

1−λq +q(q−1)(Q−1)s+q(q−1)Q .

5.2 A note on skein relations

Let L+, L−, L0 be oriented links that have identical diagrams, except in one
crossing, where they are as depicted below:
Then, one can find a recursive linear formula in L+, L−, L0 – known as skein
rule – for defining the HOMFLY-PT polynomial.[12],[24],[21]
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Figure 9:

Figure 10:

In [19] is explained a way of finding the skein rule of the 2-variable polynomial
that derives from Ocneanu’s trace function. Here we modify this way, in order
to find the skein relations of the trace-invariant we defined above:

We consider a mixed link, which may be assumed to be the closure of a mixed
braid, and we pick a crossing in it, which is not a mixed one. Using conjugation,
this crossing appears in the end of the word, and – again by conjugation – we
may assume that L+ = α̂σi

2, L− = α̂ and L0 = α̂σi, for some α ∈ B1,n. By the
defining relations of Hn(q, Q) we have

tr(π(ασi
2))− q tr(π(α)) = (q − 1) tr(π(ασi)).

Let e be the exponent sum of α with respect to the σi’s, and multiply the

above equation by T (
√

λ)
e+1

√
q , where

T =
[
− 1− λq√

λ(1− q)

]n−1

.

Then
1

√
q
√

λ
T (
√

λ)
e+2

tr(π(ασi
2))−√q

√
λ T (

√
λ)

e
tr(π(α))

= (
√

q − 1
√

q
) T (

√
λ)

e+1
tr(π(ασi)) ;

so from the definition of X we obtain the skein relation:

1
√

q
√

λ
XL+ −

√
q
√

λ XL− = (
√

q − 1
√

q
) XL0 •

(The above relation together with the initial condition in S3, X(unknot) = 1,
define uniquely the HOMFLY-PT polynomial.) In the same manner, but with
less difficulty, we obtain a second skein rule for the mixed braiding, that derives
from the relation

t′i
−1 =

1
Q

t′i +
1−Q

Q
· 1

as follows: Let M+,M−,M0 be oriented mixed links that have diagrams iden-
tical, except in the regions depicted below:
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We consider a mixed link, which – as already mentioned – may be assumed to
be the closure of a mixed braid, and we pick in it a positive mixed twist (as
illustrated above). Note that, using conjugation in B1,n, we can always create
such a twist. Thus, by conjugation we may assume that M+ = α̂ Ti,M− =

α̂ Ti
−1 and M0 = α̂, for some α ∈ B1,n. So we obtain:

tr(π(α Ti
−1)) =

1
Q

tr(π(α Ti)) +
1−Q

Q
tr(π(α)) ;

and, if we multiply the above equation by T (
√

λ)
e√

Q we have√
QT (

√
λ)

e
tr(π(α Ti

−1)) =
1√
Q

T (
√

λ)
e
tr(π(α Ti))+

1−Q√
Q

T (
√

λ)
e
tr(π(α)) .

Hence, since the Ti’s do not change the exponent sum of α, neither the number
of its strings, we obtain the following skein rule:

1√
Q

XM+ −
√

QXM− = (
√

Q− 1√
Q

) XM0 • •

One can check that the two skein rules together with the initial conditions

X1 = 1 , 1 ∈ B1,1 and XT = s , T ∈ B1,1 • ••

suffice to calculate X inductively for any mixed link; but one would also have
to prove that X defined this way is well-defined.

J. Hoste and M. Kidwell defined in [15] a ‘new chromatic skein invariant
for a special class of dichromatic links, which may be viewed as an invariant of
oriented monochromatic links inside a solid torus; and this as such is the exact
analogue of the HOMFLY-PT polynomial’. In their set-up, the solid torus string
Î is perpendicular to the plane on which the rest of the link projects, and it
is allowed to move by isotopy. The theorem they proved in the preliminary
version of [15] (Theorem 2.1) is the following, (where, for convenience, we use
our notation for expressing the different links):

Theorem 2.1 There exists a unique invariant W i ∈ Z
[
v±1, zj

±1, α, x±1, λ±1, h+

]
, j 6=

i , of Type Ii links satisfying the following properties:

1. Crossing Rule: v−1 WL+ − v WL− = zj XL0

2. Clasp Rule: x−1 WM+ + xWM− = α WM0

3. Connected Sum Rule: WKconn.sumiJ = (v−1 − v) zj
−1 λ−1 WJWK

4. Initial Data: W1̂ = λ , 1 ∈ B1,1 and W
T̂ ′ = h+ , T ′ ∈ B1,1
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Figure 11:

where the i-coloured unknot corresponds to Î, and the j-coloured components
correspond to the rest of the mixed link.

We can observe now that the Crossing Rule is the same as the skein rule •
above, if we set v =

√
q
√

λ and zj =
√

q − 1√
q ; whilst the Clasp Rule resembles

the skein rule •• above, if we set x =
√

Q and α =
√

Q − 1√
Q

, but apparently
the two rules still differ by a sign. As J. Przytycki pointed out, we can show
that the two rules are essentially the same if we substitute x = iy and α = −iα′.
Also, the Initial Data is the same as in rule • • • , if we set λ = 1 and h+ = s.

Notice that, in our set-up there does not appear any connected-sum rule for the
component Î of two mixed links. The explanation lies in the fact that in our
set-up, the component Î of a mixed link as well as the string I of a mixed braid
remain always pointwise fixed.

Aside If Î∪L1, Î∪L2 are two mixed links, and I∪B1, I∪B2 are two correspond-
ing mixed braids then, I∪(L1conn.sumL2) corresponds to I∪(B1conn.sumB2)
, as pictured below (compare with [19]):
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